Integral Circulant Ramanujan Graphs of Prime Power Order
نویسندگان
چکیده
A connected ρ-regular graph G has largest eigenvalue ρ in modulus. G is called Ramanujan if it has at least 3 vertices and the second largest modulus of its eigenvalues is at most 2 √ ρ− 1. In 2010 Droll classified all Ramanujan unitary Cayley graphs. These graphs of type ICG(n, {1}) form a subset of the class of integral circulant graphs ICG(n,D), which can be characterised by their order n and a set D of positive divisors of n in such a way that they have vertex set Z/nZ and edge set {(a, b) : a, b ∈ Z/nZ, gcd(a− b, n) ∈ D}. We extend Droll’s result by drawing up a complete list of all graphs ICG(ps,D) having the Ramanujan property for each prime power ps and arbitrary divisor set D.
منابع مشابه
The exact maximal energy of integral circulant graphs with prime power order
The energy of a graph was introduced by Gutman in 1978 as the sum of the absolute values of the eigenvalues of its adjacency matrix. We study the energy of integral circulant graphs, also called gcd graphs. These are Cayley graphs on cyclic groups (i.e. there adjacency matrix is circulant) each of whose eigenvalues is an integer. Given an arbitrary prime power p, we determine all integral circu...
متن کاملIntegral circulant graphs of prime power order with maximal energy
The energy of a graph is the sum of the moduli of the eigenvalues of its adjacency matrix. We study the energy of integral circulant graphs, also called gcd graphs, which can be characterized by their vertex count n and a set D of divisors of n in such a way that they have vertex set Zn and edge set {{a, b} : a, b ∈ Zn, gcd(a− b, n) ∈ D}. Using tools from convex optimization, we study the maxim...
متن کاملPerfect state transfer in integral circulant graphs of non square-free order
This paper provides further results on the perfect state transfer in integral circulant graphs (ICG graphs). The non-existence of PST is proved for several classes of ICG graphs containing an isolated divisor d0, i.e. the divisor which is relatively prime to all other divisors from d ∈ D \ {d0}. The same result is obtained for classes of integral circulant graphs having the NSF property (i.e. e...
متن کاملOn the Automorphism Group of Integral Circulant Graphs
The integral circulant graph Xn(D) has the vertex set Zn = {0, 1, 2, . . . , n − 1} and vertices a and b are adjacent, if and only if gcd(a − b, n) ∈ D, where D = {d1, d2, . . . , dk} is a set of divisors of n. These graphs play an important role in modeling quantum spin networks supporting the perfect state transfer and also have applications in chemical graph theory. In this paper, we deal wi...
متن کاملOn the Enumeration of Circulant Graphs of Prime Power and Square Free Orders
The aim of this work is twofold: to unify, systematize and extend the known results of the analytical (i.e. formula-wise) counting of directed and undirected circulant graphs with a prime or, more generally, square-free number of vertices; to develop a general combinatorial framework for the counting of nonisomorphic circulant graphs with pk vertices, p odd prime, k 2. The general problem of co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 20 شماره
صفحات -
تاریخ انتشار 2013